PII: S0040-4020(96)00740-5

Aggregation of Synthetic Zinc Chlorins with Several Esterified Alkyl Chains as Models of Bacteriochlorophyll-c Homologs

Hitoshi Tamiaki*, Shinya Miyata, Yasuhiko Kureishi and Rikuhei Tanikaga

Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-77, Japan

Abstract: Zinc complexes of 3-hydroxymethyl-13¹-oxochlorin possessing several branched alkyl chains as an esterified group at the 17-position were systematically prepared. In non-polar organic solvents, these compounds aggregated to form oligomers absorbing up to 800-nm light with around a 740-nm peak, which are good models for bacteriochlorophylls-c and d, extramembranous antenna pigments of photosynthetic green bacteria. All the visible spectra of the *in-vitro* oligomers are the same and the esterified alcohols induced no effect on the local structure of the oligomers. The circular dichroism spectra changed with elongation of esterified alkyl chains, which resulted in the similar spectra to the *in-vivo* oligomers. Esterified alcohols should subtly affect the supramolecular structure and/or stability of the self-aggregates. Copyright ⊚ 1996 Elsevier Science Ltd

INTRODUCTION

Bacteriochlorophyll(=BChl)s-c, d and e are the main pigments for extramembranous light-harvesting antenna complexes (chlorosomes) of photosynthetic green bacteria¹. These compounds self-aggregate in chlorosomes to form oligomers absorbing longer wavelength lights than the monomeric species^{2,3}. Such *invivo* self-aggregates are structurally different from well-known pigment-peptide complexes in membranous antennae⁴. These self-aggregation arrangements are caused by the molecular structure of BChls-c, d, e, which have a 3^1 -hydroxy group in the molecule. Bacteriochlorophylls-a, b and chlorophyll(=Chl)s-a, b, which are other photosynthetic antenna pigments, have less coordinating acetyl and vinyl groups at the 3-position,

Fig. 1. Chlorosomal pigments

BChl-c in Chloroflexus aurantiacus

12422 H. TAMIAKI et al.

respectively. Recent research^{3,5-9} revealed that the special bonding 13-C=O···H-O···Mg is important for the self-aggregation.

BChls-c, d, e are composed of several variants of molecular formula¹⁰ as shown in Fig. 1, which are also different from the single molecular structures of (B)Chls-a, b. This divergency should regulate the in-vivo supramolecular structures and affect energy migration. Absolute configuration at the chiral 3^1 -position^{7,11-13} and alkyl groups at the 8- and 12-positions^{11,14-16} control the in-vivo self-aggregation structures as well as the in-vivo. Moreover, some BChls-c, d, e have an only farnesyl group as an esterified alkyl chain at the 17-position and others have several alkyl chains^{10,17,18}. Typically, in *Chloroflexus aurantiacus*, BChl-c has only ethyl and methyl groups at the 8- and 12-positions, respectively but several esterified chains, cetyl, oleyl, stearyl, geranylgeranyl and phytyl groups as a R-group in Fig. 1^{17} . The natural diversity of esterified alcohol should have some biological meaning, especially for chlorosomal self-aggregates, but few attempts^{19,20} to elucidate the reasons of the variety have been done to our knowledge.

We have already reported that zinc chlorins possessing hydroxymethyl group at the 3-position are good models for BChls-c, d, magnesium chlorins possessing 1-hydroxyethyl group at the 3-position 9.21,22. The synthetic zinc chlorins are more available and stable than natural magnesium chlorins. Here we report on the systematic synthesis of zinc chlorins 7 with several esterified alkyl chains at the 17-position and the self-aggregation in non-polar organic solvents.

RESULTS AND DISCUSSION

Synthesis

Methyl ester of 1 was exchanged to other esters 3 by treatment of ROH 2 and H_2SO_4 (see Scheme 1). The reaction was applied for C_5 and C_{10} alcohols (2a and 2b) but neither C_{15} nor C_{20} ester (3c and 3d) could be obtained by this route. The ester exchange afforded the desired product 3 with a small amount of an ether product as shown in Scheme 1. An alternative route is necessary for the effective preparation of 3. Esterification of acid of 1 (17²-COOH) with alcohol 2 without protection of the 3^1 -hydroxy group was difficult and the synthetic route was chosen as shown in Scheme 2. Condensation of pyropheophorbide-a (4) with alcohol (C_5 - C_{20} , 2a-d) by 1-methyl-2-chloropyridinium iodide²³ gave the corresponding esters 5a-d in high yield. The

Scheme 1

vinyl group of the esters 5 was oxidized by OsO₄-NaIO₄ to afford the aldehyde 6 and the formyl group was selectively reduced by $tBuNH_2BH_3$ to afford the hydroxymethyl group as in 3^9 . Zinc metallation of the compounds 3 gave the titled model compounds 7 possessing a branched alkyl group at the C17 ester group.

Visible Spectra

Zinc complexes 7a-d in THF are monomeric species from the sharp visible absorption spectra⁹ in which Q_y-and Soret bands are 646 and 424 nm, respectively (see a broken line of Fig. 2). In 1% (v/v) THF-hexane, all the four zinc complexes 7 showed the same visible spectra; λ_{max} (Q_y) = 734 and λ_{max} (Soret) = 449 nm (see a solid line of Fig. 2). The red-shifted and broadened spectra are characteristic of oligomeric 7 compared with other reported spectra⁹. The identification shows that 7a-d aggregate in non-polar organic solvents to form an oligomer in the same manner, including 13-C=O···H(X)O···Zn and π - π interaction of chlorin chromophores which were reported so far⁹. Alkyl chains at the C17 ester do not affect the visible spectra of the *in-vitro* oligomers²⁴. Larsen *et al.*¹⁹ have already reported that visible spectra of *in-vivo* oligomers are independent upon the esterified alcohol (C₁₀-decanol and C₂₀-phytol) of BChl-c in a chlorosome. Theoretical study²⁵ suggested that 20 BChl-c molecules aggregate to reach the maximum value of red-shift in absorption spectra b exciton coupling and that aggregates of > 20 BChl-c show the similar visible spectra. Therefore alkyl groups the ester do not make a large contribution to the formation of self-aggregation²⁶ and also intermolecular interaction among the alkyl groups is not important for the visible absorption of aggregates (> 20 molecules).

12424 H. TAMIAKI et al.

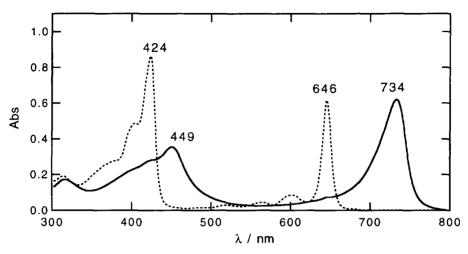


Fig. 2. UV-Vis spectra of 7, —, in 1% (v/v) THF-hexane; —, in THF.

Circular Dichroism Spectra

In 1% (v/v) THF-hexane of 7, CD peaks were measured in the red-shifted absorption region. Especially, giant CD bands were observed in the red-shifted Q_v-band (see Fig. 3). The CD shapes are dependent upon the alkyl chain at the C17 ester. Oligomeric 7a displayed the S-shape CD bands (type II spectra according to the nomenclature of Griebenow et al.²⁷) as shown in Fig. 3B. The CD spectrum of oligomeric 7b (a solid line of Fig. 3C) is different from that of 7a. In 7b, 745-nm minimum appeared and both the maximum peak around 730 nm and the minimum peak around 700 nm are small and/or blue-shifted compared with that of 7a. These tendencies were observed in elongation of the alkyl chain, $7b \rightarrow 7c \rightarrow 7d$. Oligomeric 7c and 7d showed the reversed S-shape CD with a small dip at the lower wavelength region (mixture of major type I and minor type II) as shown in Fig. 3D and 3E. CD spectra of 7b and 7c (solid lines of Fig. 3C and 3D) were simulated by linear combination of those of 7a with 7d (broken lines of Fig. 3C and 3D), indicating that all the CD spectra observed were represented by combination of basic two components²⁷ (reversed S-shape type I spectra with the zero-crossing point ≈ absorption maximum and S-shape type II spectra with the zero-crossing point < absorption maximum). Systematic change in the CD spectra showed that supramolecular structures varied gradually with elongation of the esterified alkyl chain. Aggregates of mixture of BChls-c with C16-C20 alkyl chains in natural chlorosomes of Chloroflexus aurantiacus J-10-fl9 show a similar CD spectrum with in-vitro 7c (with C15) and 7d (with C20) oligomers. Therefore alkyl groups at the ester affect supramolecular structures and/or stability of self-aggregates. The effect might be ascribed to intraand inter-supramolecular interaction of the alkyl groups in the self-aggregates or to the interaction of the alkyl chain with hexane as the solvent. Induced CD spectra by exciton coupling in the oligomers are still affected by aggregates of > 20 molecules, compared with the visible spectra. Considering that CD spectra are more sensitive to the supramolecular structure than visible spectra, the results of the change in CD spectra are consistent with no change in the visible spectra discussed above. Theoretical study also supports such a CD sensitivity²⁸.

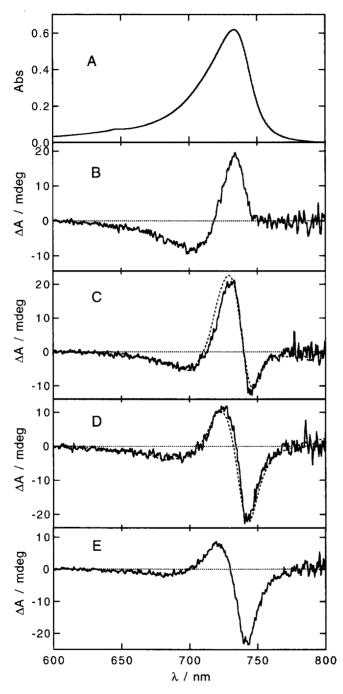


Fig. 3. Visible (A) and CD (B–E) spectra of 7 in 1% (ν/ν) THF–hexane,

A: VIS of 7,
B: CD of 7a (n=1, C₅),
C: —, CD of 7b (n=2,
C₁₀); ---, calculated by
1.21 (B) + 0.85 (E),
D: —, CD of 7c (n=3,
C₁₅); ---, calculated by
0.36 (B) + 1.15 (E),
E: CD of 7d (n=4, C₂₀).
All CD spectra observed were normalized by
absorbance of Q_y-peak,

 $\Delta A = (A_L - A_R) / Abs_{max}$

CONCLUSION

Visible spectra showed that the supramolecular skeleton of self-aggregates of the synthetic zinc chlorins is unchanged even if the esterified alkyl chains are changed. CD spectra showed that the whole supramolecular structure is changed with the increase in the number of carbons in the alkyl chain at the C17 ester. Alkyl chains should affect aggregation number of 7 and large aggregates can make a stable helical structure to form a rod structure²⁹ which is seen in natural chlorosomes^{1-3,15}. Similarity of CD spectra of *in-vitro* oligomer of 7c and 7d with *in-vivo* oligomers of BChl-c shows that long alkyl chains stabilize such a rod structure. The present model study clarifies that the long alkyl chains ($\geq C_{15}$) are important for chlorosome-like self-aggregation and indicates that the *in-vivo* diversity of esterified alcohols should regulate the supramolecular structures, including rod structures.

EXPERIMENTAL

Apparatus

Visible absorption spectra were measured with Hitachi U-3500 spectrophotometer. Circular dichroism spectra were measured with Jasco J-720W spectropolarimeter. All melting points were measured with a Yanagimoto micro melting apparatus and were uncorrected. ¹H-NMR spectra were measured with Bruker AC-300 spectrometer; chemical shifts (δ) are expressed in parts per million relative to CHCl₃ (7.26 ppm) as an internal reference. Mass spectra were recorded on JEOL HX-100 spectrometer; FAB-MS samples were dissolved in CHCl₃ and *m*-nitrobenzyl alcohol was used as the matrix. High-performance liquid chromatography was done with Shimadzu LC-10AS pump, SPD-10AV visible detector and C-R6A chromatopac.

Materials

Methyl 3-devinyl-3-hydroxymethylpyropheophorbide-a (1) and pyropheophorbide-a (4) were prepared according to the procedures reported by Tamiaki *et al.*⁹ 3-Methyl-1-butanol (2a) and 3,7-dimethyl-1-octanol (2b) were commercially available. 3,7,11-Trimethyl-1-dodecanol (2c) and 3,7,11,15-tetramethyl-1-hexadecanol (2d) were prepared by hydrogenation of farnesol and phytol, respectively (stirring of the methanol solution with palladium-charcoal overnight under H_2 at room temperature). Toluene was distilled and stored over molecular sieves 3A. THF was distilled from CaH₂ before use. Flash column chromatography was performed with silica gel (Merck, Kieselgel 60, 9385). High-performance liquid chromatography was performed with a packed ODS column (Gelpack, GL-OP100, Hitachi Chemical Co., 6×150 mm). Solvents for visible and CD spectra were purchased from Nacalai Tesque (Grade for UV-Spectroscopy).

General Procedures

Ester Exchange of Methyl to a Long Chain Group. Methyl 3-devinyl-3-hydroxymethylpyropheophorbide-a (1, 20 mg) was added to an alcohol (2a and 2b, 8 ml). Concentrated H₂SO₄ (0.8 ml) was dropwise added to the reaction mixture at 0 °C. After stirred overnight under Ar, the mixture was poured into ice water and dichloromethane, and stirred. The aqueous layer was extracted with dichloromethane repeatedly

until it was colorless. The combined organic layers were washed with aq. NaHCO₃ and water, and dried over Na₂SO₄. Dichloromethane and the unreacted alcohol was evaporated *in vacuo*. The residue was chromatographed with Et₂O-CH₂Cl₂, to give the corresponding ester of 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (3a and 3b) with a small amount of an ether product as shown in Scheme 1.

Condensation of Pyropheophorbide-a with a Saturated Alcohol. Distilled toluene (20 ml) and triethylamine (260 µl, 10 eq.) and 1-methyl-2-chloropyridinium iodide (240 mg, 5 eq.) were added to a THF (20 ml) solution of pyropheophorbide-a (4, 100 mg). To the reaction mixture was added an equivalent of a saturated alcohol 2 with stirring. The reaction mixture was refluxed for 10 h under Ar. After cooling, the mixture was poured into water and dichloromethane, and stirred. The aqueous layer was extracted with dichloromethane repeatedly until it was colorless. The combined organic layers were washed with an aqueous saturated NaHCO₃ solution and water, and dried over Na₂SO₄. After evaporation, the residue was chromatographed with 4% Et₂O-CH₂Cl₂, to give the saturated alcohol ester of pyropheophorbide-a (5).

Oxidation of 3-Vinyl to 3-Formyl Group. An aqueous (7.5 ml) solution of NaIO₄ (1.19 g) and acetic acid (0.5 ml) was added with a peristaltic pump to a distilled THF solution (100 ml) of a compound possessing 3-vinyl group (5, 1 mmol) and OsO₄ (10 mg). After stirred overnight under Ar, the reaction mixture was poured into water and CH₂Cl₂ and was stirred for 30 min. The aqueous layer was extracted with CH₂Cl₂ repeatedly until it was colorless. The combined organic layers were washed with an aqueous saturated NaHCO₃ solution and water, and dried over Na₂SO₄. After evaporation, the residue was chromatographed with 2% Et₂O-CH₂Cl₂ to give the compound possessing 3-formyl group (6).

Reduction of 3-Formyl to 3-Hydroxymethyl Group. *tert*-Butylamine borane complex (20 mg) was added to a dichloromethane (100 ml) solution of a compound possessing 3-formyl group (**6**, 0.2 mmol). After stirred overnight under Ar, the mixture was poured into aq. 2% HCl (100 ml) and stirred for 20 min in an ice bath. The aqueous layer was extracted with dichloromethane repeatedly until it was colorless. The combined organic layers were washed with aq. 2% HCl (500 ml), water (500 ml), aq. NaHCO₃ (100 ml) and aq. NaCl (500 ml), and dried over Na₂SO₄. After evaporation, the residue was chromatographed with 8-10% Et₂O-CH₂Cl₂, to give the compound possessing 3-hydroxymethyl group (**3**).

Zinc Metallation of a Chlorin. A saturated methanol solution with Zn(OAc)₂·2H₂O (1 ml) was added to a dichloromethane (10 ml) solution of metal-free chlorin (3, 10 mg). After stirred overnight, the reaction mixture was poured into aq. 4% NaHCO₃, and stirred for 15 min. After filtration, the mixture was extracted with dichloromethane, washed with water and dried over Na₂SO₄. After evaporation, the residue was chromatographed with 2% MeOH–CH₂Cl₂, to give the corresponding zinc complex (7). The zinc complexes were highly purified by HPLC (methanol as an eluate) before spectroscopic analysis.

Spectral Data

Pyropheophorbide-*a* 3-methyl-1-butyl ester (5a). 69% yield (based on 4); black solids; mp 85-90 °C; UV-Vis (CH₂Cl₂) λ_{max} =667 (relative intensity, 0.43), 610 (0.07), 539 (0.09), 509 (0.10), 413 nm (1.00); ¹H-NMR (CDCl₃) δ =9.51, 9.39, 8.56 (1H+1H+1H, s, 5-, 10-, 20-H), 8.01 (1H, dd, J=12, 18 Hz, 3-

12428 H. TAMIAKI et al.

CH), 6.29 (1H, dd, J=1, 18 Hz, 3^1 -CH-trans), 6.18 (1H, dd, J=1, 12 Hz, 3^1 -CH-cis), 5.27, 5.11 (1H+1H, d, J=20 Hz, 13^1 -CH₂), 4.49 (1H, dq, J=2, 7 Hz, 18-H), 4.31 (1H, dt, J=8, 2 Hz, 17-H), 3.99, 4.05 (1H+1H, dt, J=11, 7 Hz, 17^4 -CH₂), 3.69 (2H, q, J=7 Hz, 8-CH₂), 3.68, 3.41, 3.24 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 2.60-2.75, 2.43-2.58, 2.17-2.38 (1H+1H+2H, m, 17-CH₂CH₂), 1.82 (3H, d, J=7 Hz, 18-CH₃), 1.70 (3H, t, J=7 Hz, 8^1 -CH₃), 1.46-1.65 (1H, m, 176-CH), 1.38 (2H, q, J=7 Hz, $I7^5$ -CH₂), 0.82 (6H, d, J=7 Hz, $I7^7$ -(CH₃)₂), 0.46 (1H, br, NH), -1.69 (1H, s, NH). MS (FAB) found: m/z 605. Calcd for C₃₈H₄₅N₄O₃: MH+, 605.

Pyropheophorbide-*a* 3,7-dimethyl-1-octyl ester (5b). 76% yield (based on 4); black solids; mp 67-72 °C; UV-Vis (CH₂Cl₂) λ_{max} =667 (0.44), 610 (0.07), 539 (0.09), 509 (0.10), 414 nm (1.00); ¹H-NMR (CDCl₃) δ =9.50, 9.39, 8.56 (1H+1H+1H, s, 5-, 10-, 20-H), 8.01 (1H, dd *J*=12, 18 Hz, 3-CH), 6.29 (1H, dd, *J*=1, 18 Hz, 3¹-CH-trans), 6.17 (1H, dd, *J*=1, 12 Hz, 3¹-CH-cis), 5.28, 5.11 (1H+1H, d, *J*=20 Hz, 13¹-CH₂), 4.49 (1H, dq, *J*=2, 7 Hz, 18-H), 4.31 (1H, dt, *J*=8, 2 Hz, 17-H), 3.99, 4.05 (1H+1H, dt, *J*=11, 7 Hz, 17⁴-CH₂), 3.69 (2H, q, *J*=7.5 Hz, 8-CH₂), 3.67, 3.41, 3.24 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 2.65-2.79, 2.48-2.65, 2.20-2.45 (1H+1H+2H, m, 17-CH₂CH₂), 1.82 (3H, d, *J*=7 Hz, 18-CH₃), 1.70 (3H, t, *J*=7.5 Hz, 8¹-CH₃), 0.95-1.55, (10H, m, 17⁵,7-9-CH₂, 17⁶,10-CH), 0.79 (9H, d, *J*=7 Hz, 17⁷-CH₃, 17¹¹-(CH₃)₂), 0.49 (1H, br, NH), -1.68 (1H, s, NH), MS (FAB) found: *m/z* 675. Calcd for C4₃H₅5N₄O₃: MH+, 675.

Pyropheophorbide-a 3,7,11-trimethyl-1-dodecyl ester (5c). 50% yield (based on 4); black solids; mp 61-65 °C; UV-Vis (CH₂Cl₂) λ_{max} =668 (0.47), 610 (0.08), 539 (0.09), 509 (0.10), 414 nm (1.00); ¹H-NMR (CDCl₃) δ=9.50, 9.39, 8.56 (1H+1H+1H, s, 5-, 10-, 20-H), 8.01 (1H, dd J=12, 18 Hz, 3-CH), 6.28 (1H, dd, J=1, 17 Hz, 3¹-CH-trans), 6.17 (1H, dd, J=1, 12 Hz, 3¹-CH-cis), 5.28, 5.11 (1H+1H, d, J=20 Hz, 13¹-CH₂), 4.49 (1H, dq, J=2, 7 Hz, 18-H), 4.31 (1H, dt, J=8, 2 Hz, 17-H), 3.99, 4.06 (1H+1H, m, 17⁴-CH₂), 3.69 (2H, q, J=8 Hz, 8-CH₂), 3.67, 3.40, 3.23 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 2.65-2.73, 2.47-2.57, 2.20-2.45 (1H+1H+2H, m, 17-CH₂CH₂), 1.82 (3H, d, J=7 Hz, 18-CH₃), 1.70 (3H, t, J=8 Hz, 8¹-CH₃), 0.93-1.58 (17H, m, 17⁵,7-9,11-13-CH₂, 17⁶,10,14-CH), 0.86, 0.76, 0.79 (6H+3H+3H, d, J=7 Hz, 17⁷,11-CH₃, 17¹⁵-(CH₃)₂), 0.48 (1H, br, NH), -1.68 (1H, s, NH). MS (FAB) found: m/z 745. Calcd for C4₈H₆5N₄O₃: MH+, 745.

Pyropheophorbide-*a* 3,7,11,15-tetramethyl-1-hexadecyl ester (5d). 45% yield (based on 4); black solids; mp 58-61 °C; UV-Vis (CH₂Cl₂) λ_{max} =667 (0.43), 610 (0.07), 539 (0.08), 509 (0.09), 414 nm (1.00); ¹H-NMR (CDCl₃) δ=9.52, 9.41, 8.57 (1H+1H+1H, s, 5-, 10-, 20-H), 8.02 (1H, dd *J*=12, 18 Hz, 3-CH), 6.29 (1H, dd, *J*=1, 18 Hz, 3¹-CH-trans), 6.18 (1H, dd, *J*=1, 12 Hz, 3¹-CH-cis), 5.28, 5.11 (1H+1H, d, *J*=20 Hz, 13¹-CH₂), 4.50 (1H, dq, *J*=2, 7 Hz, 18-H), 4.31 (1H, dt *J*=8, 2 Hz, 17-H), 3.99, 4.05 (1H+1H, dt, *J*=11, 7 Hz, 17⁴-CH₂), 3.70 (2H, q, *J*=8 Hz, 8-CH₂), 3.68, 3.41, 3.25 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 2.62-2.77, 2.44-2.60, 2.20-2.38 (1H+1H+2H, m, 17-CH₂CH₂), 1.82 (3H, d, *J*=7 Hz, 18-CH₃), 1.70 (3H, t, *J*=8 Hz, 8¹-CH₃), 0.90-1.62 (24H, m, 17^{5,7-9,11-13,15-17}-CH₂, 17^{6,10,14,18}-CH), 0.86, 0.84, 0.82, 0.80 (3H+6H+3H+3H, d, *J*=7 Hz, 17^{7,11,15}-CH₃, 17¹⁹-(CH₃)₂), 0.49 (1H, br, NH), -2.29 (1H, s, NH). MS (FAB) found: *m/z* 815. Calcd for C₅₃H₇₅N₄O₃: MH+, 815.

Pyropheophorbide-*d* 3-methyl-1-butyl ester (6a). 60% yield (based on 5a); dark brown solids; mp 95-100 °C; UV-Vis (CH₂Cl₂) λ_{max} =695 (0.79), 555 (0.15), 522 (0.13), 428 (1.00), 388 nm (0.85); ¹H-NMR (CDCl₃) δ=11.42 (1H, s, 3-CH), 10.06, 9.38, 8.79 (1H+1H+1H, s, 5-, 10-, 20-H), 5.32, 5.17 (1H+1H, d, J=20 Hz, 13¹-CH₂), 4.57 (1H, dq, J=2, 7 Hz, 18-H), 4.31 (1H, dt, J=8, 2 Hz, 17-H), 4.01, 4.08 (1H+1H, dt, J=11, 7 Hz, 17⁴-CH₂), 3.71, 3.62 3.16 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 3.56 (2H, q, J=7 Hz, 8-CH₂), 2.65-2.78, 2.52-2.65, 2.23-2.41 (1H+1H+2H, m, 17-CH₂CH₂), 1.87 (3H, d, J=7 Hz, 18-CH₃), 1.60 (3H, t, J=7 Hz, 8¹-CH₃), 1.45-1.6 (1H, m, 17⁶-CH), 1.4 (2H, q, J=7 Hz, 17⁵-CH₂), 0.84 (6H, d, J=7 Hz, 17⁷-(CH₃)₂), -0.35 (1H, br, NH), -1.69 (1H, s, NH). MS(FAB) found: m/z 607. Calcd for C₃₇H₄₃N₄O₄: MH⁺, 607.

Pyropheophorbide-*d* **3,7-dimethyl-1-octyl ester** (**6b**). 59% yield (based on **5b**); dark brown solids; mp 85-88 °C; UV-Vis (CH₂Cl₂) λ_{max} =695 (0.90), 555 (0.14), 522 (0.14), 428 (1.00), 388 nm (0.86); ¹H-NMR (CDCl₃) δ=11.40 (1H, s, 3-CH), 10.08, 9.41, 8.79 (1H+1H+1H, s, 5-, 10-, 20-H), 5.34, 5.17 (2H, d, J=20 Hz, 13¹-CH₂), 4.57 (1H, dq, J=2, 7 Hz, 18-H), 4.31 (1H, dt, J=8, 2 Hz, 17-H), 4.00, 4.08 (1H+1H, dt, J=11, 7 Hz, 17⁴-CH₂), 3.72, 3.63 3.17 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 3.58 (2H, q, J=7 Hz, 8-CH₂), 2.65-2.83, 2.52-2.65, 2.21-2.41 (1H+1H+2H, m, 17-CH₂CH₂), 1.87 (3H, d, J=7 Hz, 18-CH₃), 1.64 (3H, t, J=8 Hz, 8¹-CH₃), 0.95-1.58 (10H, m, 17^{5,7-9}-CH₂, 17^{6,10}-CH), 0.80 (9H, d, J=7 Hz, 17⁷-CH₃, 17¹¹-(CH₃)₂), -0.33 (1H, br, NH), -2.27 (1H, s, NH). MS (FAB) found: m/z 677. Calcd for C₄₂H₅₃N₄O₄: MH⁺, 677.

Pyropheophorbide-d 3,7,11-trimethyl-1-dodecyl ester (6c). 58% yield (based on **5c**); dark brown solids; mp 68-72 °C; UV-Vis (CH₂Cl₂) λ_{max} =694 (0.74), 554 (0.15), 522 (0.15), 427 (1.00), 388 nm (0.89); ¹H-NMR (CDCl₃) δ=11.40 (1H, s, 3-CH), 10.04, 9.37, 8.79 (1H+1H+1H, s, 5-, 10-, 20-H), 5.33, 5.17 (1H+1H, d, J=20 Hz, 13¹-CH₂), 4.58 (1H, dq, J=2, 7 Hz, 18-H), 4.39 (1H, dt, J=8, 2 Hz, 17-H), 4.02, 4.08 (1H+1H, dt, J=11, 7 Hz, 17⁴-CH₂), 3.71, 3.62, 3.15 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 3.58 (2H, q, J=7 Hz, 8-CH₂), 2.70-2.81, 2.51-2.68, 2.23-2.40 (1H+1H+2H, m, 17-CH₂CH₂), 1.88 (3H, d, J=7 Hz, 18-CH₃), 1.63 (3H, t, J=8 Hz, 8¹-CH₃), 0.96-1.68 (17H, m, 17^{5,7-9,11-13}-CH₂, 17^{6,10,14}-CH), 0.83, 0.82, 0.78 (6H+3H+3H, d, J=6.5 Hz, 17^{7,11}-CH₃, 17¹⁵-(CH₃)₂), -0.38 (1H, br, NH), -2.30 (1H, s, NH). MS(FAB) found: m/z 747. Calcd for C₄7H₆3N₄O₄: MH⁺, 747.

Pyropheophorbide-*d* **3,7,11,15-tetramethyl-1-hexadecyl ester** (**6d**). 61% yield (based on 5**d**); dark brown solids; mp 62-66 °C; UV-Vis (CH₂Cl₂) λ_{max} =695 (0.78), 554 (0.17), 522 (0.17), 428 (1.00), 388 nm (0.94); ¹H-NMR (CDCl₃) δ=11.52 (1H, s, 3-CH), 10.25, 9.55, 8.83 (1H+1H+1H, s, 5-, 10-, 20-H), 5.35, 5.19 (1H+1H, d, J=20 Hz, 13¹-CH₂), 4.58 (1H, dq, J=2, 7 Hz, 18-H), 4.39 (1H, dt J= 2, 8 Hz, 17-H), 3.95-4.09 (1H+1H, m, 17⁴-CH₂), 3.76, 3.70, 3.28 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 3.69 (2H, q, J=8 Hz, 8-CH₂), 2.66-2.80, 2.51-2.65, 2.23-2.38 (1H+1H+2H, m, 17-CH₂CH₂), 1.86 (3H, d, J=7 Hz, 18-CH₃), 1.70 (3H, t, J=8 Hz, 8¹-CH₃), 0.94-1.68 (24H, m, 17⁵,7-9,11-13,15-17-CH₂, 17⁶,10,14,18-CH), 0.87, 0.84, 0.80, 0.79 (3H+6H+3H+3H, d, J=7 Hz, 17⁷,11,15-CH₃, 17¹⁹-(CH₃)₂), -0.2 (1H, br, NH), -2.10 (1H, s, NH), MS(FAB) found: m/z 817. Calcd for C₅₂H₇₃N₄O₄: MH⁺, 817.

- 3-Devinyl-3-hydroxymethylpyropheophorbide-a 3-methyl-1-butyl ester (3a). 81% yield (based on 6a); bluish black solids; mp 120-123 °C; UV-Vis (CH₂Cl₂) λ_{max} =662 (0.43), 605 (0.06), 536 (0.08), 504 (0.08), 409 nm (1.00); ¹H-NMR (CDCl₃) δ =9.49, 9.44, 8.56 (1H+1H+1H, s, 5-, 10-, 20-H), 5.91 (2H, s, 3-CH₂), 5.25, 5.09 (1H+1H, d, J=20 Hz, 13¹-CH₂), 4.48 (1H, dq, J=2, 7 Hz, 18-H), 4.28 (1H, dt, J=8, 2 Hz, 17-H), 4.00, 4.06 (1H+1H, dt, J=11, 7 Hz, 17⁴-CH₂), 3.69 (2H, q, J=8 Hz, 8-CH₂), 3.65, 3.29 3.26 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 2.59-2.75, 2.44-2.59, 2.18-2.36 (1H+1H+2H, m, 17-CH₂CH₂), 1.80 (3H, d, J=7 Hz, 18-CH₃), 1.69 (3H, t, J=8 Hz, 8¹-CH₃), 1.45-1.61 (1H, m, 17⁶-CH), 1.38 (2H, q, J=7 Hz, 17⁵-CH₂), 0.83 (6H, d, J=7 Hz, 17⁷-(CH₃)₂), 0.0 (1H, br, NH), -1.69 (1H, s, NH) MS (FAB) found: m/z 608. Calcd for C₃₇H₄₅N₄O₄: MH⁺, 608.
- 3-Devinyl-3-hydroxymethylpyropheophorbide-a 3,7-dimethyl-1-octyl ester (3b). 83% yield (based on 6b); bluish black solids; mp 115-118 °C; UV-Vis (CH₂Cl₂) λ_{max} =662 (0.47), 605 (0.07), 536 (0.09), 505 (0.09), 410 nm (1.00); ¹H-NMR (CDCl₃) δ =9.44, 9.42, 8.55 (1H+1H+1H, s, 5-, 10-, 20-H), 5.88 (2H, s, 3-CH₂), 5.22, 5.07 (1H+1H, d, J=20 Hz, 13¹-CH₂), 4.47 (1H, dq, J=2, 7 Hz, 18-H), 4.26 (1H, br-d, J=8 Hz, 17-H), 3.97-4.09 (2H, m, 17⁴-CH₂), 3.68 (2H, q, J= 7.5 Hz, 8-CH₂), 3.62, 3.41 3.25 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 2.60-2.75, 2.48-2.60, 2.18-2.35 (1H+1H+2H, m, 17-CH₂CH₂), 1.79 (3H, d, J=7 Hz, 18-CH₃), 1.68 (3H, t, J=7.5 Hz, 8¹-CH₃), 1.07-1.62 (10H, m, 17⁵,7-9-CH₂, 17⁶,10-CH), 0.89, 0.87 (6H+3H, d, J=7 Hz, 17⁷-CH₃, 17¹¹-(CH₃)₂), 0.0 (1H, br, NH), -1.83 (1H, s, NH). MS (FAB) found: m/z 678. Calcd for C₄2H₅5N₄O₄: MH+, 678.
- **3-Devinyl-3-hydroxymethylpyropheophorbide-***a* **3,7,11-trimethyl-1-dodecyl ester (3c)**. 80% yield (based on **6c**); bluish black solids; mp 113-115°C; UV-Vis (CH₂Cl₂) λ_{max} =662 (0.48), 605 (0.08), 536 (0.08), 505 (0.09), 410 nm (1.00); ¹H-NMR (CDCl₃) δ =9.32, 9.24, 8.50 (1H+1H+1H, s, 5-, 10-, 20-H), 5.78 (2H, s, 3-CH₂), 5.10, 4.96 (1H+1H, d, J=20 Hz, 13¹-CH₂), 4.41 (1H, dq, J=2, 7 Hz, 18-H), 4.06 (1H, br-d, J=8 Hz, 17-H), 4.01-4.12 (2H, m, 17⁴-CH₂), 3.59 (2H, q, J=8 Hz, 8-CH₂), 3.49, 3.39, 3.19 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 2.55-2.65, 2.45-2.55, 2.10-2.32 (1H+1H+2H, m, 17-CH₂CH₂), 1.75 (3H, d, J=7 Hz, 18-CH₃), 1.63 (3H, t, J=8 Hz, 8¹-CH₃), 0.81-1.59 (17H, m, 17^{5,7-9,11-13}-CH₂, 17^{6,10,14}-CH), 0.83, 0.78 (9H+3H, d, J=6.5 Hz, 17^{7,11}-CH₃, 17¹⁵-(CH₃)₂), 0.0 (1H, br, NH), -2.00 (1H, s, NH). MS (FAB) found: m/z 749. Calcd for C₄₇H₆₅N₄O₄: MH⁺, 749.
- 3-Devinyl-3-hydroxymethylpyropheophorbide-a 3,7,11,15-tetramethyl-1-hexadecyl ester (3d). 81% yield (based on 6d); bluish black solids; mp 112-115 °C; UV-Vis (CH₂Cl₂) λ_{max} =662 (0.46), 605 (0.07), 536 (0.08), 505 (0.09), 410 nm (1.00); ¹H-NMR (CDCl₃) δ =9.37, 9.34, 8.53 (1H+1H+1H, s, 5-, 10-, 20-H), 5.85 (2H, s, 3-CH₂), 5.17, 5.01 (1H+1H, d, J=20 Hz, 13¹-CH₂), 4.45 (1H, q, J=7 Hz, 18-H), 4.39 (1H, d, J=8 Hz, 17-H), 3.97-4.13 (2H, m, 17⁴-CH₂), 3.64 (2H, q, J=8 Hz, 8-CH₂), 3.56, 3.40, 3.23 (3H+3H+3H, s, 2-, 7-, 12-CH₃), 2.48-2.58, 2.38-2.48, 2.07-2.22 (1H+1H+2H, m, 17-CH₂CH₂), 1.78 (3H, d, J=7 Hz, 18-CH₃), 1.66 (3H, t, J=8 Hz, 8¹-CH₃), 0.96-1.60 (24H, m, 175,7-9,11-13,15-17-CH₂, 176,10,14,18-CH), 0.88, 0.83, 0.80, 0.79 (6H+3H+3H+3H, d, J=7 Hz, 17⁷,11,15-CH₃, 17¹⁹-(CH₃)₂), 0.1 (1H, br, NH), -1.92 (1H, s, NH). MS (FAB) found: m/z 819. Calcd for C₅₂H₇₅N₄O₄: MH⁺, 819.

Zinc 3-devinyl-3-hydroxymethylpyropheophorbide-a 3-methyl-1-butyl ester (7a). 92% yield (based on 3a); dark green solids; mp > 300 °C; UV-Vis (THF) λ_{max} =647 (0.73), 602 (0.09), 566 (0.05), 521 (0.03), 424 nm (1.00), MS (FAB) found: m/z 670. Calcd for $C_{37}H_{42}N_{4}O_{4}^{64}Zn$: M⁺, 670.

Zinc 3-devinyl-3-hydroxymethylpyropheophorbide-a 3,7-dimethyl-1-octyl ester (7b). 92% yield (based on 3b); dark green solids; mp > 300 °C; UV-Vis (THF) λ_{max} =647 (0.71), 602 (0.09), 566 (0.05), 521 (0.03), 424 nm (1.00). MS (FAB) found: m/z 740. Calcd for C₄₂H₅₂N₄O₄⁶⁴Zn: M⁺, 740.

Zinc 3-devinyl-3-hydroxymethylpyropheophorbide-a 3,7,11-trimethyl-1-dodecyl ester (7c). 94% yield (based on 3c); dark green solids; mp > 300 °C; UV-Vis (THF) λ_{max} =647 (0.73), 602 (0.11), 566 (0.05), 521 (0.03), 424 nm (1.00). MS (FAB) found: m/z 810. Calcd for C₄₇H₆₂N₄O₄6⁴Zn: M⁺, 810.

Zinc 3-devinyl-3-hydroxymethylpyropheophorbide-a 3,7,11,15-tetramethyl-1-hexadecyl ester (7d). 95% yield (based on 3d); dark green solids; mp > 300 °C; UV-Vis (THF) λ_{max} =647 (0.73), 602 (0.09), 566 (0.05), 521 (0.03), 424 nm (1.00). MS (FAB) found: m/z 880. Calcd for $C_{52}H_{72}N_4O_4^{64}Zn$: M+, 880.

ACKNOWLEDGMENTS

This work was partially supported by a Grant-in-Aid for Scientific Research (No. 05808052, 06808057) from the Ministry of Education, Science, Sports and Culture.

REFERENCES AND NOTES

- 1. Olson, J. M. Biochim. Biophys. Acta 1980, 594, 33-51.
- 2. Blankenship, R. E.; Olson, J. M.; Miller, M. In *Anoxygenic Photosynthetic Bacteria*, Blankenship, R. E.; Madigan, M. T.; Bauer, C. E. Eds.; Kluwer: Netherlands, 1995; pp. 399-435.
- 3. Tamiaki, H. Coord. Chem. Rev. 1996, 147, in press.
- McDermott, G.; Prince, S. M.; Freer, A. A.; H.-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature, 1995, 374, 517–521.
- 5. Hildebrandt, P.; Tamiaki, H.; Holzwarth, A. R.; Schaffner, K. J. Phys. Chem. 1994, 98, 2192-2197.
- 6. Uehara, K.; Tachibana, T.; Tsunooka, M.; Ozaki, Y. Photochem. Photobiol. 1995, 62, 496-501.
- Chiefari, J.; Griebenow, K.; Fages, F.; Griebenow, N.; Balaban, T. S.; Holzwarth, A. R.; Schaffner, K. J. Phys. Chem. 1995, 99, 1357-1365.
- 8. Balaban, T. S.; Holzwarth, A. R.; Schaffner, K.; Boender, G.-J.; de Groot, H. J. M. *Biochemistry* 1995, 34, 15259–15266.
- 9. Tamiaki, H.; Amakawa, M.; Shimono, Y.; Tanikaga, R.; Holzwarth, A. R.; Schaffner, K. *Photochem. Photobiol.* **1996**, 63, 92–99.
- 10. Smith, K. M. Photosynth. Res. 1994, 41 23-26.

- 11. Bobe, F. W.; Pfenning, N.; Swanson, K. L.; Smith, K. M. Biochemistry 1990, 29, 4340–4347.
- 12. Tamiaki, H.; Takeuchi, S.; Tanikaga, R.; Balaban, S. T.; Holzwarth, A. R.; Schaffner, K. Chem. Lett. 1994, 401-402.
- 13. Balaban, T. S.; Holzwarth, A. R.; Schaffner, K. J. Mol. Str. 1995, 349, 183-186.
- 14. Nozawa, T.; Ohtomo, K.; Takeshita, N.; Morishita, Y.; Osawa, M.; Madigan, M. T. Bull. Chem. Soc. Jpn. 1992, 65, 3493-3494.
- 15. Holzwarth A. R.; Schaffner, K. Photosynth. Res. 1994, 41, 225-233.
- 16. Uehara, K.; Mimuro, M.; Ozaki, Y.; Olson, J. M. Photosynth. Res. 1994, 41, 235-243.
- 17. Fages, F.; Griebenow, N.; Griebenow, K.; Holzwarth, A. R.; Schaffner, K. J. Chem. Soc., Perkin Trans. 1 1990, 2791-2797.
- 18. Otte, S. C. M.; van de Meent, E. J.; van Veelen, P. A.; Pundsnes, A. S.; Amesz, J. *Photosynth. Res.* 1993, 35, 159–169.
- Larsen, K. L.; Cox, R. P.; Miller, M. Photosynth. Res. 1994, 41, 151-156; Larsen, K. L., Miller, M.;
 Cox, R. P. Arch. Microbiol. 1995, 163, 119-123.
- Some researchers were aware of the open question and commented without experimental evidence; see ref. 2; Scheer, H. In *Chlorophylls*, Scheer, H. Ed.; CRC: Boca Raton, FL, 1991; pp. 3–30; Cherepy, N.; Du, M.; Holzwarth, A. R.; Mathies, R. A. *J. Phys. Chem.* 1996, 100, 4662–4671.
- 21. Tamiaki, H.; Holzwarth, A. R.; Schaffner, K. J. Photochem. Photobiol. B: Biol. 1992, 15, 355-360.
- 22. Tamiaki, H.; Miyatake, T.; Tanikaga, R.; Holzwarth, A. R.; Schaffner, K. Angew. Chem. Int. Ed. Engl. 1996, 35, 772–774.
- 23. Mukaiyama, T.; Usui, M.; Shimada, E.; Saigo, K. Chem. Lett. 1975, 1045-1048.
- 24. In aqueous THF solution (polar solvents), the alkyl chains affected the structures of hydrate aggregates of chlorophyllide-a and the visible spectra were dependent upon the hydrophobic interaction of the alkyl chains; see Uehara, K.; Hioki, Y.; Mimuro, M. *Photochem. Photobiol.* **1993**, 58, 127–132.
- 25. Alden, R. G.; Lin, S. H.; Blankenship, R. E. J. Luminesc. 1992, 51, 51-66.
- 26. Several FT-IR studies revealed that the ester carbonyl group was free from any interaction in the self-aggregates; see ref. 3, 7 and 9.
- 27. Griebenow, K.; Holzwarth, A. R.; van Mourik, F.; van Grondelle, R. *Biochim. Biophys. Acta* 1991, 1058, 194-202.
- 28. Somsen, O. J. G.; van Grondelle, R.; van Amerongen, H. In *Photosynthesis: from Light to Biosphere*; Mathis, P. Ed.; Kluwer: Netherlands, 1995; Vol. 1, pp. 263–266.
- Recently Ma et al. reported that chlorosomal BChl-c aggregates with a higher structural order gave a type I
 CD spectrum and lower structural aggregates had type II, which supported our conclusion; see Ma, Y.-Z.;
 Cox, R. P.; Gillbro, T.; Miller, M. Photosynth. Res. 1996, 47, 157–165.

(Received in Japan 11 June 1996; accepted 7 August 1996)